MakeItFrom.com
Menu (ESC)

C18100 Copper vs. S43940 Stainless Steel

C18100 copper belongs to the copper alloys classification, while S43940 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18100 copper and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.3
21
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 80
76
Shear Modulus, GPa 47
77
Shear Strength, MPa 300
310
Tensile Strength: Ultimate (UTS), MPa 510
490
Tensile Strength: Yield (Proof), MPa 460
280

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
890
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 81
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 43
38
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
86
Resilience: Unit (Modulus of Resilience), kJ/m3 900
200
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 16
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 94
6.8
Thermal Shock Resistance, points 18
18

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.4 to 1.2
17.5 to 18.5
Copper (Cu), % 98.7 to 99.49
0
Iron (Fe), % 0
78.2 to 82.1
Magnesium (Mg), % 0.030 to 0.060
0
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.5
0