MakeItFrom.com
Menu (ESC)

C18200 Copper vs. EN 1.4869 Casting Alloy

C18200 copper belongs to the copper alloys classification, while EN 1.4869 casting alloy belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C18200 copper and the bottom bar is EN 1.4869 casting alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 11 to 40
5.7
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 310 to 530
540
Tensile Strength: Yield (Proof), MPa 97 to 450
310

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
1200
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1070
1390
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 320
10
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 31
70
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
7.7
Embodied Energy, MJ/kg 41
110
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 96
26
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 860
230
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.6 to 16
18
Strength to Weight: Bending, points 11 to 16
17
Thermal Diffusivity, mm2/s 93
2.6
Thermal Shock Resistance, points 11 to 18
14

Alloy Composition

Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0.6 to 1.2
24 to 26
Cobalt (Co), % 0
14 to 16
Copper (Cu), % 98.6 to 99.4
0
Iron (Fe), % 0 to 0.1
11.4 to 23.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
4.0 to 6.0