MakeItFrom.com
Menu (ESC)

C18200 Copper vs. C19200 Copper

Both C18200 copper and C19200 copper are copper alloys. They have a very high 99% of their average alloy composition in common.

For each property being compared, the top bar is C18200 copper and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 11 to 40
2.0 to 35
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 65 to 82
38 to 76
Shear Modulus, GPa 44
44
Shear Strength, MPa 210 to 320
190 to 300
Tensile Strength: Ultimate (UTS), MPa 310 to 530
280 to 530
Tensile Strength: Yield (Proof), MPa 97 to 450
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
1080
Melting Onset (Solidus), °C 1070
1080
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 320
240
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
58 to 74
Electrical Conductivity: Equal Weight (Specific), % IACS 81
58 to 75

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 96
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 860
42 to 1120
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.6 to 16
8.8 to 17
Strength to Weight: Bending, points 11 to 16
11 to 16
Thermal Diffusivity, mm2/s 93
69
Thermal Shock Resistance, points 11 to 18
10 to 19

Alloy Composition

Chromium (Cr), % 0.6 to 1.2
0
Copper (Cu), % 98.6 to 99.4
98.5 to 99.19
Iron (Fe), % 0 to 0.1
0.8 to 1.2
Lead (Pb), % 0 to 0.050
0 to 0.030
Phosphorus (P), % 0
0.010 to 0.040
Silicon (Si), % 0 to 0.1
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2