MakeItFrom.com
Menu (ESC)

C18200 Copper vs. C66300 Brass

Both C18200 copper and C66300 brass are copper alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C18200 copper and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 11 to 40
2.3 to 22
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
42
Shear Strength, MPa 210 to 320
290 to 470
Tensile Strength: Ultimate (UTS), MPa 310 to 530
460 to 810
Tensile Strength: Yield (Proof), MPa 97 to 450
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
1050
Melting Onset (Solidus), °C 1070
1000
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 320
110
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
25
Electrical Conductivity: Equal Weight (Specific), % IACS 81
26

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 96
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 860
710 to 2850
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.6 to 16
15 to 26
Strength to Weight: Bending, points 11 to 16
15 to 22
Thermal Diffusivity, mm2/s 93
32
Thermal Shock Resistance, points 11 to 18
16 to 28

Alloy Composition

Chromium (Cr), % 0.6 to 1.2
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 98.6 to 99.4
84.5 to 87.5
Iron (Fe), % 0 to 0.1
1.4 to 2.4
Lead (Pb), % 0 to 0.050
0 to 0.050
Phosphorus (P), % 0
0 to 0.35
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5