MakeItFrom.com
Menu (ESC)

C18200 Copper vs. C70600 Copper-nickel

Both C18200 copper and C70600 copper-nickel are copper alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C18200 copper and the bottom bar is C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 11 to 40
3.0 to 34
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
46
Shear Strength, MPa 210 to 320
190 to 330
Tensile Strength: Ultimate (UTS), MPa 310 to 530
290 to 570
Tensile Strength: Yield (Proof), MPa 97 to 450
63 to 270

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1080
1150
Melting Onset (Solidus), °C 1070
1100
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 320
44
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 81
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
51
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 96
6.5 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 860
16 to 290
Stiffness to Weight: Axial, points 7.3
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.6 to 16
9.1 to 18
Strength to Weight: Bending, points 11 to 16
11 to 17
Thermal Diffusivity, mm2/s 93
13
Thermal Shock Resistance, points 11 to 18
9.8 to 19

Alloy Composition

Chromium (Cr), % 0.6 to 1.2
0
Copper (Cu), % 98.6 to 99.4
84.7 to 90
Iron (Fe), % 0 to 0.1
1.0 to 1.8
Lead (Pb), % 0 to 0.050
0 to 0.050
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
9.0 to 11
Silicon (Si), % 0 to 0.1
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5