MakeItFrom.com
Menu (ESC)

C18400 Copper vs. 7108A Aluminum

C18400 copper belongs to the copper alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C18400 copper and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 13 to 50
11 to 13
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 190 to 310
210
Tensile Strength: Ultimate (UTS), MPa 270 to 490
350
Tensile Strength: Yield (Proof), MPa 110 to 480
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 210
380
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1080
630
Melting Onset (Solidus), °C 1070
520
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 320
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
36
Electrical Conductivity: Equal Weight (Specific), % IACS 81
110

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.9
2.9
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
610 to 640
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
47
Strength to Weight: Axial, points 8.5 to 15
33 to 34
Strength to Weight: Bending, points 10 to 16
38
Thermal Diffusivity, mm2/s 94
59
Thermal Shock Resistance, points 9.6 to 17
15 to 16

Alloy Composition

Aluminum (Al), % 0
91.6 to 94.4
Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Chromium (Cr), % 0.4 to 1.2
0 to 0.040
Copper (Cu), % 97.2 to 99.6
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.15
0 to 0.3
Lithium (Li), % 0 to 0.050
0
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0 to 0.2
Titanium (Ti), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.7
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15