MakeItFrom.com
Menu (ESC)

C18400 Copper vs. CC332G Bronze

Both C18400 copper and CC332G bronze are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 13 to 50
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
43
Tensile Strength: Ultimate (UTS), MPa 270 to 490
620
Tensile Strength: Yield (Proof), MPa 110 to 480
250

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1080
1060
Melting Onset (Solidus), °C 1070
1010
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 320
45
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
11
Electrical Conductivity: Equal Weight (Specific), % IACS 81
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
55
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
270
Stiffness to Weight: Axial, points 7.3
7.7
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 8.5 to 15
21
Strength to Weight: Bending, points 10 to 16
19
Thermal Diffusivity, mm2/s 94
12
Thermal Shock Resistance, points 9.6 to 17
21

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 97.2 to 99.6
80 to 86
Iron (Fe), % 0 to 0.15
1.0 to 3.0
Lead (Pb), % 0
0 to 0.1
Lithium (Li), % 0 to 0.050
0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
1.5 to 4.0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.7
0 to 0.5
Residuals, % 0 to 0.5
0