MakeItFrom.com
Menu (ESC)

C18400 Copper vs. Nickel 333

C18400 copper belongs to the copper alloys classification, while nickel 333 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 13 to 50
34
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 16 to 84
85
Shear Modulus, GPa 44
81
Shear Strength, MPa 190 to 310
420
Tensile Strength: Ultimate (UTS), MPa 270 to 490
630
Tensile Strength: Yield (Proof), MPa 110 to 480
270

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1070
1410
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 320
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 81
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
55
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
8.5
Embodied Energy, MJ/kg 41
120
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
170
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
180
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.5 to 15
21
Strength to Weight: Bending, points 10 to 16
19
Thermal Diffusivity, mm2/s 94
2.9
Thermal Shock Resistance, points 9.6 to 17
16

Alloy Composition

Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.4 to 1.2
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 97.2 to 99.6
0
Iron (Fe), % 0 to 0.15
9.3 to 24.5
Lithium (Li), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 48
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0 to 0.5
0