MakeItFrom.com
Menu (ESC)

C18400 Copper vs. C42500 Brass

Both C18400 copper and C42500 brass are copper alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 13 to 50
2.0 to 49
Poisson's Ratio 0.34
0.33
Rockwell B Hardness 16 to 84
60 to 92
Shear Modulus, GPa 44
42
Shear Strength, MPa 190 to 310
220 to 360
Tensile Strength: Ultimate (UTS), MPa 270 to 490
310 to 630
Tensile Strength: Yield (Proof), MPa 110 to 480
120 to 590

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
1030
Melting Onset (Solidus), °C 1070
1010
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 320
120
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
28
Electrical Conductivity: Equal Weight (Specific), % IACS 81
29

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
12 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
64 to 1570
Stiffness to Weight: Axial, points 7.3
7.1
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.5 to 15
9.9 to 20
Strength to Weight: Bending, points 10 to 16
12 to 19
Thermal Diffusivity, mm2/s 94
36
Thermal Shock Resistance, points 9.6 to 17
11 to 22

Alloy Composition

Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 97.2 to 99.6
87 to 90
Iron (Fe), % 0 to 0.15
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Lithium (Li), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.050
0 to 0.35
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0 to 0.7
6.1 to 11.5
Residuals, % 0
0 to 0.5