MakeItFrom.com
Menu (ESC)

C18400 Copper vs. C52400 Bronze

Both C18400 copper and C52400 bronze are copper alloys. They have 90% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is C52400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 16 to 84
50 to 100
Shear Modulus, GPa 44
41
Tensile Strength: Ultimate (UTS), MPa 270 to 490
450 to 880

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1070
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 320
50
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
11
Electrical Conductivity: Equal Weight (Specific), % IACS 81
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
35
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 41
58
Embodied Water, L/kg 310
390

Common Calculations

Stiffness to Weight: Axial, points 7.3
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.5 to 15
14 to 28
Strength to Weight: Bending, points 10 to 16
15 to 23
Thermal Diffusivity, mm2/s 94
15
Thermal Shock Resistance, points 9.6 to 17
17 to 32

Alloy Composition

Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 97.2 to 99.6
87.8 to 91
Iron (Fe), % 0 to 0.15
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Lithium (Li), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.050
0.030 to 0.35
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0 to 0.7
0 to 0.2
Residuals, % 0
0 to 0.5