MakeItFrom.com
Menu (ESC)

C18400 Copper vs. C62400 Bronze

Both C18400 copper and C62400 bronze are copper alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is C62400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 13 to 50
11 to 14
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
42
Shear Strength, MPa 190 to 310
420 to 440
Tensile Strength: Ultimate (UTS), MPa 270 to 490
690 to 730
Tensile Strength: Yield (Proof), MPa 110 to 480
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1080
1040
Melting Onset (Solidus), °C 1070
1030
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 320
59
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
12
Electrical Conductivity: Equal Weight (Specific), % IACS 81
13

Otherwise Unclassified Properties

Base Metal Price, % relative 31
27
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 41
53
Embodied Water, L/kg 310
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
68 to 77
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
320 to 550
Stiffness to Weight: Axial, points 7.3
7.6
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 8.5 to 15
23 to 25
Strength to Weight: Bending, points 10 to 16
21 to 22
Thermal Diffusivity, mm2/s 94
16
Thermal Shock Resistance, points 9.6 to 17
25 to 26

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 97.2 to 99.6
82.8 to 88
Iron (Fe), % 0 to 0.15
2.0 to 4.5
Lithium (Li), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0 to 0.25
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0
0 to 0.5