MakeItFrom.com
Menu (ESC)

C18400 Copper vs. C72900 Copper-nickel

Both C18400 copper and C72900 copper-nickel are copper alloys. They have 77% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 13 to 50
6.0 to 20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
45
Shear Strength, MPa 190 to 310
540 to 630
Tensile Strength: Ultimate (UTS), MPa 270 to 490
870 to 1080
Tensile Strength: Yield (Proof), MPa 110 to 480
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1080
1120
Melting Onset (Solidus), °C 1070
950
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 320
29
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 81
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
39
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
4.6
Embodied Energy, MJ/kg 41
72
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
2030 to 3490
Stiffness to Weight: Axial, points 7.3
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.5 to 15
27 to 34
Strength to Weight: Bending, points 10 to 16
23 to 27
Thermal Diffusivity, mm2/s 94
8.6
Thermal Shock Resistance, points 9.6 to 17
31 to 38

Alloy Composition

Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 97.2 to 99.6
74.1 to 78
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Lithium (Li), % 0 to 0.050
0
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0 to 0.3
Nickel (Ni), % 0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0 to 0.7
0 to 0.5
Residuals, % 0
0 to 0.3

Comparable Variants