MakeItFrom.com
Menu (ESC)

C18400 Copper vs. C91600 Bronze

Both C18400 copper and C91600 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is C91600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 13 to 50
11
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
41
Tensile Strength: Ultimate (UTS), MPa 270 to 490
310
Tensile Strength: Yield (Proof), MPa 110 to 480
160

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
1030
Melting Onset (Solidus), °C 1070
860
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 320
71
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
10
Electrical Conductivity: Equal Weight (Specific), % IACS 81
10

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.7
Embodied Energy, MJ/kg 41
61
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
30
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
120
Stiffness to Weight: Axial, points 7.3
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.5 to 15
9.9
Strength to Weight: Bending, points 10 to 16
12
Thermal Diffusivity, mm2/s 94
22
Thermal Shock Resistance, points 9.6 to 17
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 97.2 to 99.6
85.9 to 89.1
Iron (Fe), % 0 to 0.15
0 to 0.2
Lead (Pb), % 0
0 to 0.25
Lithium (Li), % 0 to 0.050
0
Nickel (Ni), % 0
1.2 to 2.0
Phosphorus (P), % 0 to 0.050
0 to 0.3
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.7 to 10.8
Zinc (Zn), % 0 to 0.7
0 to 0.25
Residuals, % 0 to 0.5
0