MakeItFrom.com
Menu (ESC)

C18400 Copper vs. N08020 Stainless Steel

C18400 copper belongs to the copper alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 13 to 50
15 to 34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 190 to 310
380 to 410
Tensile Strength: Ultimate (UTS), MPa 270 to 490
610 to 620
Tensile Strength: Yield (Proof), MPa 110 to 480
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1410
Melting Onset (Solidus), °C 1070
1360
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 320
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 81
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
38
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.6
6.6
Embodied Energy, MJ/kg 41
92
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
180 to 440
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.5 to 15
21
Strength to Weight: Bending, points 10 to 16
20
Thermal Diffusivity, mm2/s 94
3.2
Thermal Shock Resistance, points 9.6 to 17
15

Alloy Composition

Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.4 to 1.2
19 to 21
Copper (Cu), % 97.2 to 99.6
3.0 to 4.0
Iron (Fe), % 0 to 0.15
29.9 to 44
Lithium (Li), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 38
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0 to 0.5
0