MakeItFrom.com
Menu (ESC)

C18400 Copper vs. R58150 Titanium

C18400 copper belongs to the copper alloys classification, while R58150 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C18400 copper and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
140
Elongation at Break, % 13 to 50
13
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
52
Shear Strength, MPa 190 to 310
470
Tensile Strength: Ultimate (UTS), MPa 270 to 490
770
Tensile Strength: Yield (Proof), MPa 110 to 480
550

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
320
Melting Completion (Liquidus), °C 1080
1760
Melting Onset (Solidus), °C 1070
1700
Specific Heat Capacity, J/kg-K 390
500
Thermal Expansion, µm/m-K 17
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
48
Density, g/cm3 8.9
5.4
Embodied Carbon, kg CO2/kg material 2.6
31
Embodied Energy, MJ/kg 41
480
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 120
94
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 980
1110
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
32
Strength to Weight: Axial, points 8.5 to 15
40
Strength to Weight: Bending, points 10 to 16
35
Thermal Shock Resistance, points 9.6 to 17
48

Alloy Composition

Arsenic (As), % 0 to 0.0050
0
Calcium (Ca), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 97.2 to 99.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.1
Lithium (Li), % 0 to 0.050
0
Molybdenum (Mo), % 0
14 to 16
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0
Titanium (Ti), % 0
83.5 to 86
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0 to 0.5
0