MakeItFrom.com
Menu (ESC)

C18600 Copper vs. EN 1.4415 Stainless Steel

C18600 copper belongs to the copper alloys classification, while EN 1.4415 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is EN 1.4415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 11
17 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 310 to 340
520 to 570
Tensile Strength: Ultimate (UTS), MPa 520 to 580
830 to 930
Tensile Strength: Yield (Proof), MPa 500 to 520
730 to 840

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
790
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 280
19
Thermal Expansion, µm/m-K 17
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 71
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.9
3.6
Embodied Energy, MJ/kg 46
51
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
1350 to 1790
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 16 to 18
29 to 33
Strength to Weight: Bending, points 16 to 17
25 to 27
Thermal Diffusivity, mm2/s 81
5.1
Thermal Shock Resistance, points 19 to 20
30 to 34

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.1 to 1.0
11.5 to 13.5
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 96.5 to 99.55
0
Iron (Fe), % 0.25 to 0.8
75.9 to 82.4
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0 to 0.25
4.5 to 6.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.050 to 0.5
0 to 0.010
Vanadium (V), % 0
0.1 to 0.5
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0

Comparable Variants