MakeItFrom.com
Menu (ESC)

C18600 Copper vs. EN 1.4655 Stainless Steel

C18600 copper belongs to the copper alloys classification, while EN 1.4655 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 11
23 to 25
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
78
Shear Strength, MPa 310 to 340
460
Tensile Strength: Ultimate (UTS), MPa 520 to 580
720 to 730
Tensile Strength: Yield (Proof), MPa 500 to 520
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1050
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1070
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 280
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 71
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
15
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.9
Embodied Energy, MJ/kg 46
41
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
510 to 580
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 16 to 18
26
Strength to Weight: Bending, points 16 to 17
23
Thermal Diffusivity, mm2/s 81
4.0
Thermal Shock Resistance, points 19 to 20
20

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.1 to 1.0
22 to 24
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 96.5 to 99.55
1.0 to 3.0
Iron (Fe), % 0.25 to 0.8
63.6 to 73.4
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0 to 0.25
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.050 to 0.5
0
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0