MakeItFrom.com
Menu (ESC)

C18600 Copper vs. CC332G Bronze

Both C18600 copper and CC332G bronze are copper alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 8.0 to 11
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
43
Tensile Strength: Ultimate (UTS), MPa 520 to 580
620
Tensile Strength: Yield (Proof), MPa 500 to 520
250

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1090
1060
Melting Onset (Solidus), °C 1070
1010
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 280
45
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
11
Electrical Conductivity: Equal Weight (Specific), % IACS 71
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.9
3.4
Embodied Energy, MJ/kg 46
55
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
270
Stiffness to Weight: Axial, points 7.3
7.7
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 16 to 18
21
Strength to Weight: Bending, points 16 to 17
19
Thermal Diffusivity, mm2/s 81
12
Thermal Shock Resistance, points 19 to 20
21

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Chromium (Cr), % 0.1 to 1.0
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 96.5 to 99.55
80 to 86
Iron (Fe), % 0.25 to 0.8
1.0 to 3.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.25
1.5 to 4.0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0.050 to 0.5
0
Zinc (Zn), % 0
0 to 0.5
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0