MakeItFrom.com
Menu (ESC)

C18600 Copper vs. C92500 Bronze

Both C18600 copper and C92500 bronze are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is C92500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.0 to 11
11
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
40
Tensile Strength: Ultimate (UTS), MPa 520 to 580
310
Tensile Strength: Yield (Proof), MPa 500 to 520
190

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
980
Melting Onset (Solidus), °C 1070
870
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 280
63
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
12
Electrical Conductivity: Equal Weight (Specific), % IACS 71
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
35
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.9
3.7
Embodied Energy, MJ/kg 46
61
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
30
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
170
Stiffness to Weight: Axial, points 7.3
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 16 to 18
9.8
Strength to Weight: Bending, points 16 to 17
12
Thermal Diffusivity, mm2/s 81
20
Thermal Shock Resistance, points 19 to 20
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Chromium (Cr), % 0.1 to 1.0
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 96.5 to 99.55
85 to 88
Iron (Fe), % 0.25 to 0.8
0 to 0.3
Lead (Pb), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 0.25
0.8 to 1.5
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10 to 12
Titanium (Ti), % 0.050 to 0.5
0
Zinc (Zn), % 0
0 to 0.5
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0
0 to 0.7