MakeItFrom.com
Menu (ESC)

C18600 Copper vs. N07750 Nickel

C18600 copper belongs to the copper alloys classification, while N07750 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 11
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 310 to 340
770
Tensile Strength: Ultimate (UTS), MPa 520 to 580
1200
Tensile Strength: Yield (Proof), MPa 500 to 520
820

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1070
1400
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 280
13
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 71
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
60
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 2.9
10
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 310
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
270
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
1770
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 16 to 18
40
Strength to Weight: Bending, points 16 to 17
30
Thermal Diffusivity, mm2/s 81
3.3
Thermal Shock Resistance, points 19 to 20
36

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.1 to 1.0
14 to 17
Cobalt (Co), % 0 to 0.1
0 to 1.0
Copper (Cu), % 96.5 to 99.55
0 to 0.5
Iron (Fe), % 0.25 to 0.8
5.0 to 9.0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.25
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.050 to 0.5
2.3 to 2.8
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0