MakeItFrom.com
Menu (ESC)

C18600 Copper vs. S44660 Stainless Steel

C18600 copper belongs to the copper alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C18600 copper and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.0 to 11
20
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
81
Shear Strength, MPa 310 to 340
410
Tensile Strength: Ultimate (UTS), MPa 520 to 580
660
Tensile Strength: Yield (Proof), MPa 500 to 520
510

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1070
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 280
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 70
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 71
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
21
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.9
4.3
Embodied Energy, MJ/kg 46
61
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 58
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1060 to 1180
640
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 16 to 18
24
Strength to Weight: Bending, points 16 to 17
22
Thermal Diffusivity, mm2/s 81
4.5
Thermal Shock Resistance, points 19 to 20
21

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.1 to 1.0
25 to 28
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 96.5 to 99.55
0
Iron (Fe), % 0.25 to 0.8
60.4 to 71
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.25
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.050 to 0.5
0.2 to 1.0
Zirconium (Zr), % 0.050 to 0.4
0
Residuals, % 0 to 0.5
0