C18600 Copper vs. ZE41A Magnesium
C18600 copper belongs to the copper alloys classification, while ZE41A magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.
For each property being compared, the top bar is C18600 copper and the bottom bar is ZE41A magnesium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 120 | |
45 |
Elongation at Break, % | 8.0 to 11 | |
3.3 |
Poisson's Ratio | 0.34 | |
0.29 |
Shear Modulus, GPa | 44 | |
18 |
Shear Strength, MPa | 310 to 340 | |
150 |
Tensile Strength: Ultimate (UTS), MPa | 520 to 580 | |
210 |
Tensile Strength: Yield (Proof), MPa | 500 to 520 | |
140 |
Thermal Properties
Latent Heat of Fusion, J/g | 210 | |
330 |
Maximum Temperature: Mechanical, °C | 200 | |
150 |
Melting Completion (Liquidus), °C | 1090 | |
640 |
Melting Onset (Solidus), °C | 1070 | |
540 |
Specific Heat Capacity, J/kg-K | 390 | |
970 |
Thermal Conductivity, W/m-K | 280 | |
110 |
Thermal Expansion, µm/m-K | 17 | |
27 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 70 | |
27 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 71 | |
130 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 31 | |
18 |
Density, g/cm3 | 8.9 | |
1.9 |
Embodied Carbon, kg CO2/kg material | 2.9 | |
24 |
Embodied Energy, MJ/kg | 46 | |
170 |
Embodied Water, L/kg | 310 | |
940 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 44 to 58 | |
6.1 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 1060 to 1180 | |
220 |
Stiffness to Weight: Axial, points | 7.3 | |
13 |
Stiffness to Weight: Bending, points | 18 | |
63 |
Strength to Weight: Axial, points | 16 to 18 | |
31 |
Strength to Weight: Bending, points | 16 to 17 | |
41 |
Thermal Diffusivity, mm2/s | 81 | |
59 |
Thermal Shock Resistance, points | 19 to 20 | |
12 |
Alloy Composition
Chromium (Cr), % | 0.1 to 1.0 | |
0 |
Cobalt (Co), % | 0 to 0.1 | |
0 |
Copper (Cu), % | 96.5 to 99.55 | |
0 to 0.1 |
Iron (Fe), % | 0.25 to 0.8 | |
0 |
Magnesium (Mg), % | 0 | |
91.7 to 95.4 |
Manganese (Mn), % | 0 | |
0 to 0.15 |
Nickel (Ni), % | 0 to 0.25 | |
0 to 0.010 |
Titanium (Ti), % | 0.050 to 0.5 | |
0 |
Unspecified Rare Earths, % | 0 | |
0.75 to 1.8 |
Zinc (Zn), % | 0 | |
3.5 to 5.0 |
Zirconium (Zr), % | 0.050 to 0.4 | |
0.4 to 1.0 |
Residuals, % | 0 | |
0 to 0.3 |