MakeItFrom.com
Menu (ESC)

C18700 Copper vs. 2007 Aluminum

C18700 copper belongs to the copper alloys classification, while 2007 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C18700 copper and the bottom bar is 2007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 9.0 to 9.6
5.6 to 8.0
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Shear Strength, MPa 170 to 190
220 to 250
Tensile Strength: Ultimate (UTS), MPa 290 to 330
370 to 420
Tensile Strength: Yield (Proof), MPa 230 to 250
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 210
390
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 1080
640
Melting Onset (Solidus), °C 950
510
Specific Heat Capacity, J/kg-K 380
870
Thermal Conductivity, W/m-K 380
130
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
47
Electrical Conductivity: Equal Weight (Specific), % IACS 99
140

Otherwise Unclassified Properties

Base Metal Price, % relative 30
11
Density, g/cm3 9.0
3.1
Embodied Carbon, kg CO2/kg material 2.6
8.0
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
390 to 530
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
44
Strength to Weight: Axial, points 9.0 to 10
33 to 38
Strength to Weight: Bending, points 11 to 12
37 to 40
Thermal Diffusivity, mm2/s 110
48
Thermal Shock Resistance, points 10 to 12
16 to 19

Alloy Composition

Aluminum (Al), % 0
87.5 to 95
Bismuth (Bi), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 98 to 99.2
3.3 to 4.6
Iron (Fe), % 0
0 to 0.8
Lead (Pb), % 0.8 to 1.5
0.8 to 1.5
Magnesium (Mg), % 0
0.4 to 1.8
Manganese (Mn), % 0
0.5 to 1.0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.8
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.3