MakeItFrom.com
Menu (ESC)

C18700 Copper vs. 7021 Aluminum

C18700 copper belongs to the copper alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C18700 copper and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 9.0 to 9.6
9.4
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
26
Shear Strength, MPa 170 to 190
270
Tensile Strength: Ultimate (UTS), MPa 290 to 330
460
Tensile Strength: Yield (Proof), MPa 230 to 250
390

Thermal Properties

Latent Heat of Fusion, J/g 210
380
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
630
Melting Onset (Solidus), °C 950
510
Specific Heat Capacity, J/kg-K 380
870
Thermal Conductivity, W/m-K 380
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
38
Electrical Conductivity: Equal Weight (Specific), % IACS 99
120

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 9.0
2.9
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
41
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
1110
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
47
Strength to Weight: Axial, points 9.0 to 10
44
Strength to Weight: Bending, points 11 to 12
45
Thermal Diffusivity, mm2/s 110
59
Thermal Shock Resistance, points 10 to 12
20

Alloy Composition

Aluminum (Al), % 0
90.7 to 93.7
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 98 to 99.2
0 to 0.25
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.25
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15