MakeItFrom.com
Menu (ESC)

C18700 Copper vs. ACI-ASTM CH20 Steel

C18700 copper belongs to the copper alloys classification, while ACI-ASTM CH20 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is ACI-ASTM CH20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 9.6
38
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 290 to 330
610
Tensile Strength: Yield (Proof), MPa 230 to 250
350

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1410
Melting Onset (Solidus), °C 950
1430
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 380
14
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
20
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.7
Embodied Energy, MJ/kg 41
53
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
200
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
300
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
22
Strength to Weight: Bending, points 11 to 12
21
Thermal Diffusivity, mm2/s 110
3.7
Thermal Shock Resistance, points 10 to 12
15

Alloy Composition

Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
22 to 26
Copper (Cu), % 98 to 99.2
0
Iron (Fe), % 0
54.7 to 66
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
12 to 15
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 0.5
0