MakeItFrom.com
Menu (ESC)

C18700 Copper vs. ASTM A387 Grade 22L Class 1

C18700 copper belongs to the copper alloys classification, while ASTM A387 grade 22L class 1 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is ASTM A387 grade 22L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 9.6
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 170 to 190
310
Tensile Strength: Ultimate (UTS), MPa 290 to 330
500
Tensile Strength: Yield (Proof), MPa 230 to 250
230

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
460
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 950
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 380
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
3.8
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.7
Embodied Energy, MJ/kg 41
23
Embodied Water, L/kg 310
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
83
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
140
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.0 to 10
18
Strength to Weight: Bending, points 11 to 12
18
Thermal Diffusivity, mm2/s 110
11
Thermal Shock Resistance, points 10 to 12
14

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 98 to 99.2
0
Iron (Fe), % 0
95.2 to 96.8
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.5
0