MakeItFrom.com
Menu (ESC)

C18700 Copper vs. EN 1.4662 Stainless Steel

C18700 copper belongs to the copper alloys classification, while EN 1.4662 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is EN 1.4662 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 9.6
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
79
Shear Strength, MPa 170 to 190
520 to 540
Tensile Strength: Ultimate (UTS), MPa 290 to 330
810 to 830
Tensile Strength: Yield (Proof), MPa 230 to 250
580 to 620

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1090
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 950
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 380
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
16
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 41
45
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
210
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
840 to 940
Stiffness to Weight: Axial, points 7.1
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
29 to 30
Strength to Weight: Bending, points 11 to 12
25
Thermal Diffusivity, mm2/s 110
3.9
Thermal Shock Resistance, points 10 to 12
22

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 98 to 99.2
0.1 to 0.8
Iron (Fe), % 0
62.6 to 70.2
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Residuals, % 0 to 0.5
0