MakeItFrom.com
Menu (ESC)

C18700 Copper vs. EN 1.7335 Steel

C18700 copper belongs to the copper alloys classification, while EN 1.7335 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is EN 1.7335 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 9.6
21 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 170 to 190
310 to 330
Tensile Strength: Ultimate (UTS), MPa 290 to 330
500 to 520
Tensile Strength: Yield (Proof), MPa 230 to 250
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
430
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 950
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 380
44
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.8
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.6
Embodied Energy, MJ/kg 41
21
Embodied Water, L/kg 310
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
91 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
210 to 260
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.0 to 10
18
Strength to Weight: Bending, points 11 to 12
18
Thermal Diffusivity, mm2/s 110
12
Thermal Shock Resistance, points 10 to 12
15

Alloy Composition

Carbon (C), % 0
0.080 to 0.18
Chromium (Cr), % 0
0.7 to 1.2
Copper (Cu), % 98 to 99.2
0 to 0.3
Iron (Fe), % 0
96.4 to 98.4
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0