MakeItFrom.com
Menu (ESC)

C18700 Copper vs. EN 1.7720 Steel

C18700 copper belongs to the copper alloys classification, while EN 1.7720 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is EN 1.7720 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 9.6
19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 290 to 330
590
Tensile Strength: Yield (Proof), MPa 230 to 250
340

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
410
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 950
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 380
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.8
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 41
30
Embodied Water, L/kg 310
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
97
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
300
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.0 to 10
21
Strength to Weight: Bending, points 11 to 12
20
Thermal Diffusivity, mm2/s 110
11
Thermal Shock Resistance, points 10 to 12
17

Alloy Composition

Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
0.3 to 0.5
Copper (Cu), % 98 to 99.2
0 to 0.3
Iron (Fe), % 0
96.6 to 98.6
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.45
Sulfur (S), % 0
0 to 0.020
Vanadium (V), % 0
0.22 to 0.3
Residuals, % 0 to 0.5
0