MakeItFrom.com
Menu (ESC)

C18700 Copper vs. Grade C-6 Titanium

C18700 copper belongs to the copper alloys classification, while grade C-6 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is grade C-6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 9.0 to 9.6
9.0
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
39
Tensile Strength: Ultimate (UTS), MPa 290 to 330
890
Tensile Strength: Yield (Proof), MPa 230 to 250
830

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
310
Melting Completion (Liquidus), °C 1080
1580
Melting Onset (Solidus), °C 950
1530
Specific Heat Capacity, J/kg-K 380
550
Thermal Conductivity, W/m-K 380
7.8
Thermal Expansion, µm/m-K 17
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
36
Density, g/cm3 9.0
4.5
Embodied Carbon, kg CO2/kg material 2.6
30
Embodied Energy, MJ/kg 41
480
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
78
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
3300
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 9.0 to 10
55
Strength to Weight: Bending, points 11 to 12
46
Thermal Diffusivity, mm2/s 110
3.2
Thermal Shock Resistance, points 10 to 12
63

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 98 to 99.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0.8 to 1.5
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.7 to 94
Residuals, % 0
0 to 0.4