MakeItFrom.com
Menu (ESC)

C18700 Copper vs. Grade CW6MC Nickel

C18700 copper belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 9.6
28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
79
Tensile Strength: Ultimate (UTS), MPa 290 to 330
540
Tensile Strength: Yield (Proof), MPa 230 to 250
310

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1080
1480
Melting Onset (Solidus), °C 950
1430
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 380
11
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
80
Density, g/cm3 9.0
8.6
Embodied Carbon, kg CO2/kg material 2.6
14
Embodied Energy, MJ/kg 41
200
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
240
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.0 to 10
18
Strength to Weight: Bending, points 11 to 12
17
Thermal Diffusivity, mm2/s 110
2.8
Thermal Shock Resistance, points 10 to 12
15

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 98 to 99.2
0
Iron (Fe), % 0
0 to 5.0
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0