MakeItFrom.com
Menu (ESC)

C18700 Copper vs. C64210 Bronze

Both C18700 copper and C64210 bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 9.0 to 9.6
35
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
42
Shear Strength, MPa 170 to 190
380
Tensile Strength: Ultimate (UTS), MPa 290 to 330
570
Tensile Strength: Yield (Proof), MPa 230 to 250
290

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1080
1040
Melting Onset (Solidus), °C 950
990
Specific Heat Capacity, J/kg-K 380
430
Thermal Conductivity, W/m-K 380
48
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
13
Electrical Conductivity: Equal Weight (Specific), % IACS 99
14

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 9.0
8.4
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 41
49
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
170
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
360
Stiffness to Weight: Axial, points 7.1
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.0 to 10
19
Strength to Weight: Bending, points 11 to 12
18
Thermal Diffusivity, mm2/s 110
13
Thermal Shock Resistance, points 10 to 12
21

Alloy Composition

Aluminum (Al), % 0
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Copper (Cu), % 98 to 99.2
89 to 92.2
Iron (Fe), % 0
0 to 0.3
Lead (Pb), % 0.8 to 1.5
0 to 0.050
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0
1.5 to 2.0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5