MakeItFrom.com
Menu (ESC)

C18700 Copper vs. C86500 Bronze

Both C18700 copper and C86500 bronze are copper alloys. They have 58% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 9.0 to 9.6
25
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 290 to 330
530
Tensile Strength: Yield (Proof), MPa 230 to 250
190

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1080
880
Melting Onset (Solidus), °C 950
860
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 380
86
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
22
Electrical Conductivity: Equal Weight (Specific), % IACS 99
25

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
48
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
180
Stiffness to Weight: Axial, points 7.1
7.4
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 9.0 to 10
19
Strength to Weight: Bending, points 11 to 12
18
Thermal Diffusivity, mm2/s 110
28
Thermal Shock Resistance, points 10 to 12
17

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Copper (Cu), % 98 to 99.2
55 to 60
Iron (Fe), % 0
0.4 to 2.0
Lead (Pb), % 0.8 to 1.5
0 to 0.4
Manganese (Mn), % 0
0.1 to 1.5
Nickel (Ni), % 0
0 to 1.0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
36 to 42
Residuals, % 0
0 to 1.0