MakeItFrom.com
Menu (ESC)

C18700 Copper vs. K93603 Alloy

C18700 copper belongs to the copper alloys classification, while K93603 alloy belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is K93603 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 43
72
Tensile Strength: Ultimate (UTS), MPa 290 to 330
490 to 810

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 950
1380
Specific Heat Capacity, J/kg-K 380
460
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
25
Density, g/cm3 9.0
8.2
Embodied Carbon, kg CO2/kg material 2.6
4.8
Embodied Energy, MJ/kg 41
66
Embodied Water, L/kg 310
120

Common Calculations

Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.0 to 10
17 to 27
Strength to Weight: Bending, points 11 to 12
17 to 24
Thermal Shock Resistance, points 10 to 12
15 to 25

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 98 to 99.2
0
Iron (Fe), % 0
61.8 to 64
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.6
Nickel (Ni), % 0
36
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.1
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.5
0