MakeItFrom.com
Menu (ESC)

C18900 Copper vs. CC752S Brass

Both C18900 copper and CC752S brass are copper alloys. They have 63% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C18900 copper and the bottom bar is CC752S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 14 to 48
8.4
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 260 to 500
350
Tensile Strength: Yield (Proof), MPa 67 to 390
190

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1080
840
Melting Onset (Solidus), °C 1020
800
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
25
Electrical Conductivity: Equal Weight (Specific), % IACS 30
28

Otherwise Unclassified Properties

Base Metal Price, % relative 31
24
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65 to 95
25
Resilience: Unit (Modulus of Resilience), kJ/m3 20 to 660
180
Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.2 to 16
12
Strength to Weight: Bending, points 10 to 16
13
Thermal Diffusivity, mm2/s 38
35
Thermal Shock Resistance, points 9.3 to 18
12

Alloy Composition

Aluminum (Al), % 0 to 0.010
0.3 to 0.7
Antimony (Sb), % 0
0 to 0.14
Arsenic (As), % 0
0.040 to 0.14
Copper (Cu), % 97.7 to 99.15
61.5 to 64.5
Iron (Fe), % 0
0 to 0.3
Lead (Pb), % 0 to 0.020
1.5 to 2.2
Manganese (Mn), % 0.1 to 0.3
0 to 0.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0.15 to 0.4
0 to 0.020
Tin (Sn), % 0.6 to 0.9
0 to 0.3
Zinc (Zn), % 0 to 0.1
31.5 to 36.7
Residuals, % 0 to 0.5
0