C18900 Copper vs. C33500 Brass
Both C18900 copper and C33500 brass are copper alloys. They have 64% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is C18900 copper and the bottom bar is C33500 brass.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 120 | |
100 |
Elongation at Break, % | 14 to 48 | |
3.0 to 28 |
Poisson's Ratio | 0.34 | |
0.31 |
Shear Modulus, GPa | 43 | |
40 |
Shear Strength, MPa | 190 to 300 | |
220 to 360 |
Tensile Strength: Ultimate (UTS), MPa | 260 to 500 | |
340 to 650 |
Tensile Strength: Yield (Proof), MPa | 67 to 390 | |
120 to 420 |
Thermal Properties
Latent Heat of Fusion, J/g | 210 | |
170 |
Maximum Temperature: Mechanical, °C | 200 | |
120 |
Melting Completion (Liquidus), °C | 1080 | |
930 |
Melting Onset (Solidus), °C | 1020 | |
900 |
Specific Heat Capacity, J/kg-K | 390 | |
390 |
Thermal Conductivity, W/m-K | 130 | |
120 |
Thermal Expansion, µm/m-K | 17 | |
20 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 30 | |
26 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 30 | |
29 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 31 | |
24 |
Density, g/cm3 | 8.9 | |
8.1 |
Embodied Carbon, kg CO2/kg material | 2.7 | |
2.7 |
Embodied Energy, MJ/kg | 42 | |
45 |
Embodied Water, L/kg | 310 | |
320 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 65 to 95 | |
8.0 to 160 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 20 to 660 | |
69 to 860 |
Stiffness to Weight: Axial, points | 7.2 | |
7.2 |
Stiffness to Weight: Bending, points | 18 | |
19 |
Strength to Weight: Axial, points | 8.2 to 16 | |
12 to 22 |
Strength to Weight: Bending, points | 10 to 16 | |
13 to 21 |
Thermal Diffusivity, mm2/s | 38 | |
37 |
Thermal Shock Resistance, points | 9.3 to 18 | |
11 to 22 |
Alloy Composition
Aluminum (Al), % | 0 to 0.010 | |
0 |
Copper (Cu), % | 97.7 to 99.15 | |
62 to 65 |
Iron (Fe), % | 0 | |
0 to 0.1 |
Lead (Pb), % | 0 to 0.020 | |
0.25 to 0.7 |
Manganese (Mn), % | 0.1 to 0.3 | |
0 |
Phosphorus (P), % | 0 to 0.050 | |
0 |
Silicon (Si), % | 0.15 to 0.4 | |
0 |
Tin (Sn), % | 0.6 to 0.9 | |
0 |
Zinc (Zn), % | 0 to 0.1 | |
33.8 to 37.8 |
Residuals, % | 0 | |
0 to 0.4 |