MakeItFrom.com
Menu (ESC)

C18900 Copper vs. N06007 Nickel

C18900 copper belongs to the copper alloys classification, while N06007 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18900 copper and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 14 to 48
38
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
79
Shear Strength, MPa 190 to 300
470
Tensile Strength: Ultimate (UTS), MPa 260 to 500
690
Tensile Strength: Yield (Proof), MPa 67 to 390
260

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1080
1340
Melting Onset (Solidus), °C 1020
1260
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
60
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 2.7
10
Embodied Energy, MJ/kg 42
140
Embodied Water, L/kg 310
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65 to 95
200
Resilience: Unit (Modulus of Resilience), kJ/m3 20 to 660
170
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.2 to 16
23
Strength to Weight: Bending, points 10 to 16
21
Thermal Diffusivity, mm2/s 38
2.7
Thermal Shock Resistance, points 9.3 to 18
18

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 97.7 to 99.15
1.5 to 2.5
Iron (Fe), % 0
18 to 21
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0.1 to 0.3
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 0
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0.15 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 0.9
0
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0