MakeItFrom.com
Menu (ESC)

C19000 Copper vs. 5056 Aluminum

C19000 copper belongs to the copper alloys classification, while 5056 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19000 copper and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
67
Elongation at Break, % 2.5 to 50
4.9 to 31
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
25
Shear Strength, MPa 170 to 390
170 to 240
Tensile Strength: Ultimate (UTS), MPa 260 to 760
290 to 460
Tensile Strength: Yield (Proof), MPa 140 to 630
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 210
400
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 1080
640
Melting Onset (Solidus), °C 1040
570
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 250
130
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
29
Electrical Conductivity: Equal Weight (Specific), % IACS 61
99

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 2.7
9.0
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 110
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 1730
170 to 1220
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 8.2 to 24
30 to 48
Strength to Weight: Bending, points 10 to 21
36 to 50
Thermal Diffusivity, mm2/s 73
53
Thermal Shock Resistance, points 9.3 to 27
13 to 20

Alloy Composition

Aluminum (Al), % 0
93 to 95.4
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 96.9 to 99
0 to 0.1
Iron (Fe), % 0 to 0.1
0 to 0.4
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0
0.050 to 0.2
Nickel (Ni), % 0.9 to 1.3
0
Phosphorus (P), % 0.15 to 0.35
0
Silicon (Si), % 0
0 to 0.3
Zinc (Zn), % 0 to 0.8
0 to 0.1
Residuals, % 0
0 to 0.15