MakeItFrom.com
Menu (ESC)

C19000 Copper vs. EN 1.4005 Stainless Steel

C19000 copper belongs to the copper alloys classification, while EN 1.4005 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19000 copper and the bottom bar is EN 1.4005 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.5 to 50
13 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 170 to 390
390 to 450
Tensile Strength: Ultimate (UTS), MPa 260 to 760
630 to 750
Tensile Strength: Yield (Proof), MPa 140 to 630
370 to 500

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
760
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
30
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 61
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
7.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 42
28
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 110
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 1730
350 to 650
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.2 to 24
23 to 27
Strength to Weight: Bending, points 10 to 21
21 to 24
Thermal Diffusivity, mm2/s 73
8.1
Thermal Shock Resistance, points 9.3 to 27
23 to 27

Alloy Composition

Carbon (C), % 0
0.060 to 0.15
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 96.9 to 99
0
Iron (Fe), % 0 to 0.1
82.4 to 87.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0.9 to 1.3
0
Phosphorus (P), % 0.15 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0