MakeItFrom.com
Menu (ESC)

C19000 Copper vs. EN 1.8550 Steel

C19000 copper belongs to the copper alloys classification, while EN 1.8550 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19000 copper and the bottom bar is EN 1.8550 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.5 to 50
11
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 170 to 390
600
Tensile Strength: Ultimate (UTS), MPa 260 to 760
1000
Tensile Strength: Yield (Proof), MPa 140 to 630
760

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
440
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 61
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
3.4
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 42
23
Embodied Water, L/kg 310
67

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 1730
1550
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.2 to 24
36
Strength to Weight: Bending, points 10 to 21
29
Thermal Diffusivity, mm2/s 73
11
Thermal Shock Resistance, points 9.3 to 27
29

Alloy Composition

Aluminum (Al), % 0
0.8 to 1.2
Carbon (C), % 0
0.3 to 0.37
Chromium (Cr), % 0
1.5 to 1.8
Copper (Cu), % 96.9 to 99
0
Iron (Fe), % 0 to 0.1
94.4 to 96.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0.9 to 1.3
0.85 to 1.2
Phosphorus (P), % 0.15 to 0.35
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0