MakeItFrom.com
Menu (ESC)

C19000 Copper vs. C90700 Bronze

Both C19000 copper and C90700 bronze are copper alloys. They have a moderately high 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19000 copper and the bottom bar is C90700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.5 to 50
12
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 260 to 760
330
Tensile Strength: Yield (Proof), MPa 140 to 630
180

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1040
830
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 250
71
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
10
Electrical Conductivity: Equal Weight (Specific), % IACS 61
10

Otherwise Unclassified Properties

Base Metal Price, % relative 31
35
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 42
60
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 110
34
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 1730
150
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.2 to 24
10
Strength to Weight: Bending, points 10 to 21
12
Thermal Diffusivity, mm2/s 73
22
Thermal Shock Resistance, points 9.3 to 27
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 96.9 to 99
88 to 90
Iron (Fe), % 0 to 0.1
0 to 0.15
Lead (Pb), % 0 to 0.050
0 to 0.5
Nickel (Ni), % 0.9 to 1.3
0 to 0.5
Phosphorus (P), % 0.15 to 0.35
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10 to 12
Zinc (Zn), % 0 to 0.8
0 to 0.5
Residuals, % 0
0 to 0.6