MakeItFrom.com
Menu (ESC)

C19000 Copper vs. S32101 Stainless Steel

C19000 copper belongs to the copper alloys classification, while S32101 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19000 copper and the bottom bar is S32101 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.5 to 50
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 170 to 390
490
Tensile Strength: Ultimate (UTS), MPa 260 to 760
740
Tensile Strength: Yield (Proof), MPa 140 to 630
500

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 61
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 42
38
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 110
230
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 1730
640
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.2 to 24
27
Strength to Weight: Bending, points 10 to 21
24
Thermal Diffusivity, mm2/s 73
4.0
Thermal Shock Resistance, points 9.3 to 27
20

Alloy Composition

Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
21 to 22
Copper (Cu), % 96.9 to 99
0.1 to 0.8
Iron (Fe), % 0 to 0.1
67.3 to 73.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.8
Nickel (Ni), % 0.9 to 1.3
1.4 to 1.7
Nitrogen (N), % 0
0.2 to 0.25
Phosphorus (P), % 0.15 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0