MakeItFrom.com
Menu (ESC)

C19010 Copper vs. ASTM A182 Grade F5a

C19010 copper belongs to the copper alloys classification, while ASTM A182 grade F5a belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19010 copper and the bottom bar is ASTM A182 grade F5a.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.4 to 22
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 210 to 360
450
Tensile Strength: Ultimate (UTS), MPa 330 to 640
710
Tensile Strength: Yield (Proof), MPa 260 to 620
520

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
510
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1010
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 63
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 48 to 63
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 42
24
Embodied Water, L/kg 310
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3 to 140
160
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
700
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 20
25
Strength to Weight: Bending, points 12 to 18
23
Thermal Diffusivity, mm2/s 75
11
Thermal Shock Resistance, points 12 to 23
20

Alloy Composition

Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 97.3 to 99.04
0
Iron (Fe), % 0
91.4 to 95.6
Manganese (Mn), % 0
0 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0.8 to 1.8
0 to 0.5
Phosphorus (P), % 0.010 to 0.050
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0