MakeItFrom.com
Menu (ESC)

C19010 Copper vs. C70400 Copper-nickel

Both C19010 copper and C70400 copper-nickel are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19010 copper and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
45
Tensile Strength: Ultimate (UTS), MPa 330 to 640
300 to 310
Tensile Strength: Yield (Proof), MPa 260 to 620
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1060
1120
Melting Onset (Solidus), °C 1010
1060
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 260
64
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 63
14
Electrical Conductivity: Equal Weight (Specific), % IACS 48 to 63
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
32
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 42
47
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
38 to 220
Stiffness to Weight: Axial, points 7.3
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 10 to 20
9.3 to 9.8
Strength to Weight: Bending, points 12 to 18
11 to 12
Thermal Diffusivity, mm2/s 75
18
Thermal Shock Resistance, points 12 to 23
10 to 11

Alloy Composition

Copper (Cu), % 97.3 to 99.04
89.8 to 93.6
Iron (Fe), % 0
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0.3 to 0.8
Nickel (Ni), % 0.8 to 1.8
4.8 to 6.2
Phosphorus (P), % 0.010 to 0.050
0
Silicon (Si), % 0.15 to 0.35
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5