MakeItFrom.com
Menu (ESC)

C19010 Copper vs. C95800 Bronze

Both C19010 copper and C95800 bronze are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C19010 copper and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.4 to 22
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
44
Tensile Strength: Ultimate (UTS), MPa 330 to 640
660
Tensile Strength: Yield (Proof), MPa 260 to 620
270

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
230
Melting Completion (Liquidus), °C 1060
1060
Melting Onset (Solidus), °C 1010
1040
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 260
36
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 63
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 48 to 63
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 42
55
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3 to 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
310
Stiffness to Weight: Axial, points 7.3
7.9
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 10 to 20
22
Strength to Weight: Bending, points 12 to 18
20
Thermal Diffusivity, mm2/s 75
9.9
Thermal Shock Resistance, points 12 to 23
23

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Copper (Cu), % 97.3 to 99.04
79 to 83.2
Iron (Fe), % 0
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0
0.8 to 1.5
Nickel (Ni), % 0.8 to 1.8
4.0 to 5.0
Phosphorus (P), % 0.010 to 0.050
0
Silicon (Si), % 0.15 to 0.35
0 to 0.1
Residuals, % 0
0 to 0.5