MakeItFrom.com
Menu (ESC)

C19020 Copper vs. 296.0 Aluminum

C19020 copper belongs to the copper alloys classification, while 296.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19020 copper and the bottom bar is 296.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
72
Elongation at Break, % 2.3 to 5.7
3.2 to 7.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
27
Tensile Strength: Ultimate (UTS), MPa 440 to 590
260 to 270

Thermal Properties

Latent Heat of Fusion, J/g 210
420
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
630
Melting Onset (Solidus), °C 1030
540
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 190
130 to 150
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
33 to 37
Electrical Conductivity: Equal Weight (Specific), % IACS 50
99 to 110

Otherwise Unclassified Properties

Base Metal Price, % relative 31
11
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 2.8
7.8
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 310
1110

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
46
Strength to Weight: Axial, points 14 to 18
24 to 25
Strength to Weight: Bending, points 14 to 18
30 to 31
Thermal Diffusivity, mm2/s 55
51 to 56
Thermal Shock Resistance, points 16 to 21
12

Alloy Composition

Aluminum (Al), % 0
89 to 94
Copper (Cu), % 95.7 to 99.19
4.0 to 5.0
Iron (Fe), % 0
0 to 1.2
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 0.5 to 3.0
0 to 0.35
Phosphorus (P), % 0.010 to 0.2
0
Silicon (Si), % 0
2.0 to 3.0
Tin (Sn), % 0.3 to 0.9
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35