MakeItFrom.com
Menu (ESC)

C19020 Copper vs. 6081 Aluminum

C19020 copper belongs to the copper alloys classification, while 6081 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19020 copper and the bottom bar is 6081 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 2.3 to 5.7
9.0
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 260 to 340
180
Tensile Strength: Ultimate (UTS), MPa 440 to 590
310

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1090
640
Melting Onset (Solidus), °C 1030
610
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 190
180
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
47
Electrical Conductivity: Equal Weight (Specific), % IACS 50
160

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 310
1180

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 14 to 18
32
Strength to Weight: Bending, points 14 to 18
37
Thermal Diffusivity, mm2/s 55
74
Thermal Shock Resistance, points 16 to 21
14

Alloy Composition

Aluminum (Al), % 0
96.3 to 98.6
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 95.7 to 99.19
0 to 0.1
Iron (Fe), % 0
0 to 0.5
Magnesium (Mg), % 0
0.6 to 1.0
Manganese (Mn), % 0
0.1 to 0.45
Nickel (Ni), % 0.5 to 3.0
0
Phosphorus (P), % 0.010 to 0.2
0
Silicon (Si), % 0
0.7 to 1.1
Tin (Sn), % 0.3 to 0.9
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15