MakeItFrom.com
Menu (ESC)

C19020 Copper vs. S17600 Stainless Steel

C19020 copper belongs to the copper alloys classification, while S17600 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C19020 copper and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.3 to 5.7
8.6 to 11
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 260 to 340
560 to 880
Tensile Strength: Ultimate (UTS), MPa 440 to 590
940 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
890
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1030
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 190
15
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 50
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 44
42
Embodied Water, L/kg 310
130

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14 to 18
34 to 54
Strength to Weight: Bending, points 14 to 18
28 to 37
Thermal Diffusivity, mm2/s 55
4.1
Thermal Shock Resistance, points 16 to 21
31 to 50

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 95.7 to 99.19
0
Iron (Fe), % 0
71.3 to 77.6
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.5 to 3.0
6.0 to 7.5
Phosphorus (P), % 0.010 to 0.2
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.3 to 0.9
0
Titanium (Ti), % 0
0.4 to 1.2
Residuals, % 0 to 0.2
0