MakeItFrom.com
Menu (ESC)

C19025 Copper vs. 2017 Aluminum

C19025 copper belongs to the copper alloys classification, while 2017 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19025 copper and the bottom bar is 2017 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 8.0 to 17
12 to 18
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Shear Strength, MPa 300 to 360
130 to 260
Tensile Strength: Ultimate (UTS), MPa 480 to 620
190 to 430

Thermal Properties

Latent Heat of Fusion, J/g 210
390
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 1080
640
Melting Onset (Solidus), °C 1020
510
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 160
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
38
Electrical Conductivity: Equal Weight (Specific), % IACS 40
110

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 320
1140

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
46
Strength to Weight: Axial, points 15 to 19
17 to 40
Strength to Weight: Bending, points 15 to 18
24 to 42
Thermal Diffusivity, mm2/s 47
56
Thermal Shock Resistance, points 17 to 22
7.9 to 18

Alloy Composition

Aluminum (Al), % 0
91.6 to 95.5
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 97.1 to 98.5
3.5 to 4.5
Iron (Fe), % 0
0 to 0.7
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0
0.4 to 1.0
Nickel (Ni), % 0.8 to 1.2
0
Phosphorus (P), % 0.030 to 0.070
0
Silicon (Si), % 0
0.2 to 0.8
Tin (Sn), % 0.7 to 1.1
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.2
0 to 0.25
Residuals, % 0
0 to 0.15