MakeItFrom.com
Menu (ESC)

C19025 Copper vs. 5082 Aluminum

C19025 copper belongs to the copper alloys classification, while 5082 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19025 copper and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
67
Elongation at Break, % 8.0 to 17
1.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
25
Shear Strength, MPa 300 to 360
210 to 230
Tensile Strength: Ultimate (UTS), MPa 480 to 620
380 to 400

Thermal Properties

Latent Heat of Fusion, J/g 210
400
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
640
Melting Onset (Solidus), °C 1020
560
Specific Heat Capacity, J/kg-K 380
910
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
32
Electrical Conductivity: Equal Weight (Specific), % IACS 40
110

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.9
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 320
1180

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 15 to 19
39 to 41
Strength to Weight: Bending, points 15 to 18
43 to 45
Thermal Diffusivity, mm2/s 47
54
Thermal Shock Resistance, points 17 to 22
17 to 18

Alloy Composition

Aluminum (Al), % 0
93.5 to 96
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 97.1 to 98.5
0 to 0.15
Iron (Fe), % 0
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0.8 to 1.2
0
Phosphorus (P), % 0.030 to 0.070
0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0.7 to 1.1
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.25
Residuals, % 0
0 to 0.15